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Abstract. In some computer vision applications, we may need to an-
alyze large numbers of similar frames depicting various aspects of an
event. In this situation, the appearance may change significantly within
the sequence, hampering efforts to track particular features. Active shape
models [1] offer one approach to this problem, by ”learning” the relation-
ship between appearance and world-state from a small set of hand-labeled
training examples. In this paper we propose a method for partitioning
the input image set which addresses two problems: first, it provides an
automatic method for selecting a set of training images for hand-labeling;
second, it results in a partitioning of the image space into regions suitable
for local model adaptation. Repeated application of the partitioning pro-
cedure results in a tree-structured representation of the image space. The
resulting structure can be used to define corresponding neighborhoods
in the shape model parameter space; a new image may be processed ef-
ficiently by first inserting it into the tree, and then solving for model
parameters within the corresponding restricted domain. The ideas are
illustrated with examples from an outdoor gaze-tracking application.

1 Introduction

Many computer vision applications consist of analyses of large numbers of similar
images; in this paper, we will be concerned with the problem of gaze estimation
from images of the eye captured with a head-mounted camera. Assuming the
camera platform does not move relative to the head, the images will vary within
a restricted subspace. Variation within this subspace will be due both to the pa-
rameters of interest (the pose of the eye), and to parameters which are irrelevant
for our purposes, such as variations in environmental illumination.

When images of the eye are collected in the laboratory, illumination can
be carefully controlled, and the variations in pose are often restricted (e.g., we
may only be interested in tracking the gaze within a display screen). In this
case, simple methods which search for features known to be present are usually
effective. When we attempt to measure gaze in natural behaviors outside of
the laboratory, however, we may be confronted with a collection of images in
which large gaze deviations cause expected features to disappear. Our inability
to control the illumination outdoors during daylight also presents a new set of
problems. Figure 1 presents a representative sample from the space of images in
our study. Subjects recorded during the day, as in figure 1, generally maintain
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their eyelids in a relatively closed posture compared to subjects recorded at night,
or in a dark laboratory. In many of the images in figure 1, the eyelids appear
closed. While some of these are certain to correspond to blinks, others correspond
to downward fixations. In spite of the fact that in many of the images we cannot
see any of the eyeball itself (and are so prevented from applying traditional eye-
tracking methods), the position and shape of the lids are highly informative.
When we have highly certain data regarding the position and orientation of the
eyeball, the pose of the lids is irrelevant to determination of the line-of-sight,
but for other frames the eyelid pose is our only observable. We seek a method
to tell us which methods to apply to any given image.

Fig. 1. A collection of images of a human subject’s eye, collected during a behavioral
experiment conducted outdoors, showing the variety of appearances encountered. In
addition to changes in gaze direction, the images vary due to illumination; in this
collection we see superimposed bright blobs (resulting from scattering or incomplete
reflection at the imaging system’s dichroic mirror), and dark vertical stripes, resulting
from the shadow of the helicopter rotor blade passing in front of the sun.

Active Shape Models [1] have been proposed to recognize structures in medical
images in the presence of variations in local image structure. In brief, these
models work by learning an association between the local image appearance of
model feature points, and the overall configuration of the features. Typically
this association is learned from a collection of images in which the structures
of interest have been hand-labeled. In selecting this training set, there are two
important considerations: first, the training set must span the range of possible
shapes (i.e., we must be sure to include the most extreme examples); second, the
sampling density must be high enough to capture the variations of shape within
the image space. Selection of the training set is therefore critical. One approach
might be to simply add images until performance becomes acceptable (perhaps
adding images chosen from the set of initial failures), but when the number of
images is large, it may not be practical to have a human expert review the model
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fit for every frame, or even to view every image prior to selecting the training
set. Therefore, we would like to have an automatic procedure to select a suitable
training set.

Methods for sampling a space of images can be found in the field of Vector

Quantization [2]. Vector Quantization (VQ) refers to a collection of techniques
used in signal coding and compression. While many variants have been proposed
for different applications, in every case the process begins with the generation
of a codebook, which is a table of images chosen to coarsely represent the entire
space. An arbitrary image is transmitted by simply sending the index of the most
similar codebook entry; the receiver, which also possesses the codebook, uses the
corresponding codebook entry to approximate the input image. The quality of
the reconstruction depends on both the size and structure of the codebook, and
many methods of codebook design have been proposed to meet the needs of
different applications. While codebook design (which is a one-time computation,
done ahead of time) is the most important determinant of reconstruction quality,
another area which has received much attention is efficient mapping of arbitrary
images into the codebook, which is critical for real-time encoding processes. It
is desirable to avoid exhaustive search, in which the input image is compared to
every codebook entry; a Tree-Structured Vector Quantizer (TSVQ) can reduce
the number of comparisons from a codebook size of N to something on the order
of log(N).

In the remainder of this paper, we present a variant of tree-structure vector
quantization developed for a large set of eye images collected during helicopter
flight tests. We then describe how the resulting codebook an be exploited to
improve the performance of active shape models and other tracking procedures,
by limiting the range of parameter values that must be searched for new images.

2 Codebook Generation

Given a set of images, we wish to find a subset which spans the entire set,
in the sense that any image from the set will be ”near” one of the exemplars

from our special subset. The exemplars are analogous to the codebook entries
in VQ, but unlike most VQ applications we are not particularly concerned with
insuring that the exemplars are good matches to the nearby images; instead, it
is simply sufficient for them to be near enough to point us in the right direction
for subsequent processing.

Typical gaze records consist of a series of fixations in which the eye is steadily
pointed at an object of interest, and saccades, which are rapid, ballistic move-
ments from one position to another. In addition to these two types of eye move-
ment, there are also smooth movements which are performed when the eye at-
tempts to follow a moving target. Smooth movements of the eye in the head
are also seen when the head moves while the eye is maintaining fixation on a
stationary target. The interested reader can find a thorough introduction to the
study of eye movements in [3] and [4].
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Because gaze behavior typically consists of fixations lasting 250-500 millisec-
onds, when we process video sequentially it is highly likely that a given frame will
be similar to the preceding frame. Therefore our algorithm proceeds as follows:
we take the first frame as the first exemplar. Subsequent frames are processed
by first computing the similarity to the exemplar chosen to represent the imme-
diately preceding frame. If the ”distance” is below a threshold δ, then we accept
the exemplar and move on to the next input frame. Otherwise, we search the set
of remaining exemplars for one whose distance is less than δ, accepting the first
one we find. If none of the current exemplars are within δ of the new image, then
we add it to the set of exemplars. This procedure results in a set of exemplars
with the following property: every image x in our collection is within δ of at least
one of the exemplars, and every exemplar is separated by at least δ from from
every other exemplar. Our goal is to choose δ as large as possible (to keep the
size of the catalog small), but still small enough that the resulting classifier on
the input images provides useful distinctions.

Fig. 2. Left panel: A two-dimensional cartoon of the codebook generation process.
Each dot represents an image, with the connecting links indicating temporal order. The
first image becomes the first exemplar (the large dot labeled 1), successive images are
associated with it as long as their distance remains less than a threshold (δ) indicated
by the circle. When a new image falls outside of this circle, a new exemplar is created,
and successive images are associated with it until they leave its δ-neighborhood. Right
panel: partition of the image space induced by the set of exemplars discovered by the
codebook generation process. Each image is associated with the nearest exemplar; dark
lines indicate boundaries between neighborhoods (Voronoi regions). Note that images
which are linked in the sub-regions may not be temporally contiguous.

The left panel of figure 2 shows a two-dimensional cartoon of this process.
The circles represent neighborhoods of radius δ centered at each exemplar, and
the colors show how each image is associated with the exemplar representing
the previous frame as long as the new distance is less than δ. We adopt this
heuristic for two reasons: first, because the temporal sequence is continuous,
and the behavior contains many stationary intervals, the previous exemplar is
usually the best choice, and we can save time by simply accepting it. Second,
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during our sequential scan of the data there will be many occasions when the
exemplar which will ultimately be found to be the nearest neighbor has not
been scanned yet. Thus the purpose of the initial pass is simply to find a set of
exemplars which completely covers the image space with δ neighborhoods. The
association of each image with the nearest exemplar is accomplished by a second
pass over the entire data set, performed after the catalog has been generated.
This process is effectively a nearest-neighbor classifier [5, 6], where the ”classes”
are defined implicitly by the exemplars. The results of the second pass are shown
in the right-hand panel of figure 2.
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Fig. 3. Plot shows the number of neighborhoods formed for different values of the
(angular) distance threshold. The heavy dashed line indicates a slope of 6 on the log-
log axes; to the extent that this matches the slope of the curves generated from the
empirical data, this suggests that the image manifold has an intrinsic dimensionality
of 6. Each data curve represents a recording of approximately 100,000 frames. The five
curves to the right of the dashed line represent images collected at night for which the
only illumination was provided by the apparatus.

The number of exemplars N found by this procedure depends on the choice
of δ, and the dependence tells us something about the intrinsic dimensionality of
the image manifold. The discovery of interesting structure from the topology of
the manifold is the subject of a relatively new field of study known as manifold

learning, exemplified by [7]. In figure 2, where we have represented the images as
points in a two-dimensional space, the number of exemplars would be expected
to grow in inverse proportion to the square of δ; in practice, the dimensionality
is much greater. Figure 3 shows a plot of the number of exemplars generated as a
function of δ for 15 individual video recordings from a head-mounted eye camera,
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each consisting of around 100,000 frames. The heavy dashed line indicates a slope
of 6 on the log-log plot, which provides a reasonable fit to the asymptotic slope
of the data graphs. The five records to the right of the dashed line correspond
to the five night flights, for which the illumination is relatively constant. While
there is a good deal of horizontal dispersion, each data set shows an asymptotic
slope near 6, suggesting that the images vary in 6 dimensions. Four of these can
be accounted for by physiological variables: two dimensions of gaze direction,
and one each for pupil dilation and degree of eyelid closure.

The data shown in figure 3 are useful in two ways: first, they allow us to
choose an initial value of δ which is small enough to generate more than one
exemplar, but not so small that the number becomes unmanageable. Secondly,
knowledge of the manifold’s intrinsic dimension tells us how to decrease δ when
we apply the procedure recursively to the neighborhoods generated by the first
pass. If N is the intrinsic dimensionality of the image manifold, then to obtain
k child nodes, we should divide δ by the Nth root of k.

3 Computational Efficiency

When δ is small relative to variation in the input set, many images are added to
the catalog, and as the size of the catalog grows, the cost of testing a new image
against the entire catalog grows apace. Can we reduce the number of tests which
must be performed? Provided we retain the distances between the exemplar
images, the answer is yes, by judicious application of the triangle inequality
(see figure 4). Imagine we are processing a new image x, which we have just
compared to the exemplar ei corresponding to the previous frame. We call the
distance between these two images d(x, ei), which we assume to be greater than
δ. There are two classes of exemplar which we can exclude from further testing:
if ei is far from x, then we can reject any exemplars which are sufficiently near
to ei ; conversely, if ei is near to x, then we can reject any exemplars which
are sufficiently far from ei. These notions are illustrated in figure 4. To reject
a candidate exemplar (like ek in figure 4) for being too far away from ei , we
apply the triangle inequality to the lower triangle in figure 4, and find that we
can reject ej if d(ei, ej) − d(ei,x) > δ. Similarly, we can apply the triangle
inequality to the upper triangle in figure 4, and see that we can reject ej if
d(ei,x) − d(ei, ej) > δ. The first test rejects all exemplars falling outside the
largest circle in figure 4, while the second test rejects all exemplars falling inside
the inner circle. Exemplars falling in the annular region bounded by the two
concentric circles cannot be rejected, and must be compared directly to x. The
two cases can be combined into a single test: reject ej if |d(ei,x)−d(ei, ej)| > δ.

Each time the distance between the new image x and an exemplar is com-
puted, we can apply the test indicated above to all the remaining exemplars
which have not yet been rejected. The computational savings resulting from this
procedure cannot be predicted without knowledge of how the input images are
distributed relative to one another. In our data set, the number of tests is reduced
by more than half, compared to exhaustive search. Offset against this savings is
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Fig. 4. Two-dimensional illustration of the use of the triangle inequality to cull unnec-
essary distance tests: the new input is x, which has been tested against the exemplar
chosen for the previous frame ei. We assume that the entire matrix of inter-exemplar
distances is available. Exemplar ej can rejected for being too close to ei, while ek can
be rejected for being too far. Exemplars falling in the annular region between the two
large circles cannot be rejected and must be tested against x.

the fact that we must maintain the symmetric matrix of distances between all
the exemplars; when a new image is added to the catalog, we must tabulate the
distances to all the other images in the catalog.

4 Distance Metrics

To this point, we have been deliberately vague about what we mean by the
”distance” between two images; a common approach is to treat the images as
points in an N-dimensional space (where N is the number of pixels, and the value
of each pixel is the coordinate), and compute the standard Euclidean distance,
as is done in [8]. This metrics, however, does not capture our intuitive idea of
visual similarity under variable illumination. Scaling an image by a constant
factor does not generally affect the visual appearance, but can result in a large
distance. Normalized cross-correlation is often used to compare images when we
wish to ignore scale changes of this sort:

r(x,y) =
x.y

|x||y|
. (1)

The normalized correlation itself does not obey the triangle inequality; how-
ever, recalling that the dot product is related to the angle between two vectors
by x.y = |x||y| cos(θ), we use the correlation to compute an angular distance
measure:

d(x,y) = arccos( r(x,y) ) . (2)

We can visualize this for the case of three dimensional vectors: if each vector is
projected to a point on the unit sphere, and the angle between the two vectors
corresponds to the arc length of the great circle joining the two points. Because
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the triangle inequality holds on the sphere, the culling algorithm described above
can be used with this distance measure.

5 Eye State Model

The primary parameters of interest in our application are the angles describing
the rotational state of the eye within the orbit, which together with the position
and orientation of the head determine the gaze vector in the world. The primary
features we will use to determine these angles are the inner and outer margins
of the iris, known as the pupil and the limbus, respectively. While the radius of
the limbus is constant for a particular subject, the radius of the pupil varies in
response to ambient light level, and is subject to continuous fluctuations due
to the under-damped nature of the neural control system. Here we assume that
pupil and limbus are concentric circles in the plane of the iris.

Fig. 5. Images of the eye with a rendering of a hand-tuned pupil-limbus model super-
imposed. The model has 5 global parameters (fixed for all images from a given run),
and 3 parameters set on a frame-by-frame basis, consisting of two gaze angles and the
pupil radius.

The problem is complicated by the fact that the pupil is not viewed directly,
but lies behind the cornea, which is the eye’s primary refracting surface. The
effect of this is to increase the apparent size and reduce the apparent distance of
the pupil relative to its physical location [9]. We approximate the appearance by
a model with no refraction, with a tunable parameter for the depth separation
between the planes containing the pupil and limbus. Other parameters which
have a fixed value for all the images from a given subject are the limbus radius,
and the distance of the plane of the limbus from the center of rotation. When
the optical axis of the eye is directed toward the camera, the pupil and limbus
appear as concentric circles in the image, and the location of their common
center provides another pair of parameters, which are constant as long as there
is no relative motion between the camera and the head. As gaze deviates from
this direction, the images pupil and limbus are foreshortened and are well-fit by
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ellipses; lines drawn through the minor axes of these ellipses all intersect at the
center point, which we use to find the center in our hand-labeling procedure.
Figure 5 shows several images labeled with the pupil-limbus model. In addition
to the iris parameters, we also label the eyelid margins in a separate labeling
procedure.

The direction of gaze is the variable of primary interest for our application;
while the tree-structure imposed on our set of images was based on overall image
similarity (as captured by the correlation), it is our intuition that images which
are similar will have similar gaze directions, and so the leaves of our tree can be
associated with compact neighborhoods in gaze space. Note that the converse is
not true: there can be images corresponding to the same direction of gaze which
are very dissimilar, either because of lighting variations or a change in eyelid
posture.
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Fig. 6. Left panel: Ellipses depicting the variability in pupil position of child node
exemplars for two first-level nodes (thick ellipses), and their corresponding second-
level child nodes (thin ellipses). Right panel: Summary of variability in pupil position
among subordinate nodes is shown for the first three levels in the hierarchy. The error
bars show the standard deviation between the groups at the same level. (There are no
error bars for the root node, because there is only one group.) The results validate our
intuition that as image similarity increases, variation in gaze direction decreases.

To validate our intuition, we computed the variability in pupil position among
the child exemplar images for the first three levels in the hierarchy for a single run
(see figure 6). To generate this figure, 653 images were hand-labeled, consisting of
the root node and the first three levels of the tree. For each image, we computed
the position of the pupil center from the stored model parameters. For each node
in the tree, we computed the mean pupil position over that node’s children, and
the corresponding standard deviations in x and y, and the covariance between
the x and y deviations. In the left panel of figure 6, these derived measures are
represented as ellipses, showing the scatter (in image space) of the pupil position
in subordinate nodes. In the figure, 2 (of 14) first level nodes are represented,
along with their all of their subordinate second-level nodes.
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A crude univariate measure was formed by taking the Pythagorean sum of
the x and y standard deviations, which is plotted for all the nodes on the right
side of figure 6. At level 0, there is only a single node (the root of the tree); the
average deviation among its children is plotted as the left-most point in figure 6.
There are 14 level 1 nodes; for each of these we perform the same calculation over
its children; we then compute the mean over the 14 nodes, plotting 1 standard
deviation of this mean as an error bar in figure 6. Although the grouping was
done on the basis of overall image appearance without regard to pupil position,
we see from the data that the gaze directions do become more tightly clustered
as we descend the tree.

6 Summary

We have described a method for decomposing a collection of images into subsets
based on similarity of appearance; the resulting set of exemplars spans and uni-
formly samples the original collection, and is useful for application of techniques
such as Active Shape Modeling which require hand-labeling of a training set.
We have obtained useful results applying this process to a data set of eye images
collected outdoors with uncontrolled illumination.
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